Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(6): 066003, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394590

RESUMO

Resonant ultrasound spectroscopy (RUS) is a powerful technique for measuring the full elastic tensor of a given material in a single experiment. Previously, this technique was practically limited to regularly shaped samples such as rectangular parallelepipeds, spheres, and cylinders [W. M. Visscher et al. J. Acoust. Soc. Am. 90, 2154 (1991)JASMAN0001-496610.1121/1.401643]. We demonstrate a new method for determining the elastic moduli of irregularly shaped samples, extending the applicability of RUS to a much larger set of materials. We apply this new approach to the recently discovered unconventional superconductor UTe_{2} and provide its elastic tensor at both 300 and 4 kelvin.

2.
Opt Express ; 31(23): 38443-38456, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017951

RESUMO

Squeezed light is injected into the dark port of gravitational wave interferometers, in order to reduce the quantum noise. A fraction of the interferometer output light can reach the OPO due to sub-optimal isolation of the squeezing injection path. This backscattered light interacts with squeezed light generation process, introducing additional measurement noise. We present a theoretical description of the noise coupling mechanism and we prove the model with experimental results. We propose a control scheme to achieve a de-amplification of the backscattered light inside the OPO with a consequent reduction of the noise caused by it. The scheme was implemented at the GEO 600 detector and has proven to be crucial in maintaining a good level of quantum noise reduction of the interferometer for high parametric gain of the OPO. In particular, the mitigation of the backscattered light noise helped in reaching 6 dB of quantum noise reduction [Phys. Rev. Lett.126, 041102 (2021)10.1103/PhysRevLett.126.041102]. We show that the impact of backscattered-light-induced noise on the squeezing performance is phenomenologically equivalent to increased phase noise of the squeezing angle control. The results discussed in this paper provide a way for a more accurate estimation of the residual phase noise of the squeezed light field. Finally, the knowledge of the backscattered light noise coupling mechanism is a useful tool to inform the design of the squeezing injection path in terms of path stability and optical isolation.

3.
Nano Lett ; 23(16): 7675-7682, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578323

RESUMO

The interplay of spin-orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.

4.
Nano Lett ; 23(6): 2397-2404, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912449

RESUMO

Quantum materials, particularly Dirac materials with linearly dispersing bands, can be effectively tuned by strain-induced lattice distortions leading to a pseudomagnetic field that strongly modulates their electronic properties. Here, we grow kagome magnet FeSn films, consisting of alternatingly stacked Sn2 honeycomb (stanene) and Fe3Sn kagome layers, on SrTiO3(111) substrates by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we show that the Sn honeycomb layer can be periodically deformed by epitaxial strain for a film thickness below 10 nm, resulting in differential conductance peaks consistent with Landau levels generated by a pseudomagnetic field greater than 1000 T. Our findings demonstrate the feasibility of strain engineering the electronic properties of topological magnets at the nanoscale.

5.
PeerJ ; 10: e14105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36317120

RESUMO

Climate change affects the marine environment on many levels with profound consequences for numerous biological, chemical, and physical processes. Benthic bioturbation is one of the most relevant and significant processes for benthic-pelagic coupling and biogeochemical fluxes in marine sediments, such as the uptake, transport, and remineralisation of organic carbon. However, only little is known about how climate change affects the distribution and intensity of benthic bioturbation of a shallow temperate shelf sea system such as the southern North Sea. In this study, we modelled and projected changes in bioturbation potential (BPp) under a continuous global warming scenario for seven southern North Sea key bioturbators: Abra alba, Amphiura filiformis, Callianassa subterranea, Echinocardium cordatum, Goniada maculata, Nephtys hombergii, and Nucula nitidosa. Spatial changes in species bioturbation intensity are simulated for the years 2050 and 2099 based on one species distribution model per species driven by bottom temperature and salinity changes using the IPCC SRES scenario A1B. Local mean bottom temperature was projected to increase between 0.15 and 5.4 °C, while mean bottom salinity was projected to moderately decrease by 1.7. Our results show that the considered benthic species are strongly influenced by the temperature increase. Although the total BP remained rather constant in the southern North Sea, the BPp for four out of seven species was projected to increase, mainly due to a simultaneous northward range expansion, while the BPp in the core area of the southern North Sea declined for the same species. Bioturbation of the most important species, Amphiura filiformis and Echinocardium cordatum, showed no substantial change in the spatial distribution, but over time. The BPp of E. cordatum remained almost constant until 2099, while the BPp of A. filiformis decreased by 41%. The northward expansion of some species and the decline of most species in the south led to a change of relative contribution to bioturbation in the southern North Sea. These results indicate that some of the selected key bioturbators in the southern North Sea might partly compensate the decrease in bioturbation by others. But especially in the depositional areas where bioturbation plays a specifically important role for ecosystem functioning, bioturbation potential declined until 2099, which might affect the biochemical cycling in sediments of some areas of the southern North Sea.


Assuntos
Bivalves , Ecossistema , Animais , Mudança Climática , Mar do Norte , Ouriços-do-Mar
6.
J Phys Chem Lett ; 13(46): 10713-10721, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36367815

RESUMO

When a metal makes contact with a band insulator, charge transfer occurs across the interface leading to band bending and a Schottky barrier with rectifying behavior. The nature of metal-Mott insulator junctions, however, is still debated due to challenges in experimental probes of such vertical heterojunctions with buried interfaces. Here, we grow lateral polymorphic heterostructures of single-layer metallic 1H and Mott insulating 1T NbSe2 by molecular beam epitaxy. We find a one-dimensional metallic channel along the interface due to the appearance of quasiparticle states with an intensity decay following 1/x2, indicating an impenetrable barrier. Near the interface, the Mott gap exhibits a strong spatial dependence arising from the difference in lattice constants between the two phases, consistent with our density functional theory calculations. These results provide clear experimental evidence for an impenetrable barrier at the metal-Mott insulator junction and the high tunability of a Mott insulator by strain.

7.
Nature ; 600(7889): 424-428, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34912085

RESUMO

The nature of dark matter remains unknown to date, although several candidate particles are being considered in a dynamically changing research landscape1. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities2-8. Here we describe a direct search for scalar field dark matter using a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits on the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beam splitter of the GEO600 interferometer. These constraints improve on bounds from previous direct searches by more than six orders of magnitude and are, in some cases, more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be investigated or constrained with direct searches using gravitational-wave detectors and highlights the potential of quantum-enhanced interferometry for dark matter detection.

8.
Phys Rev Lett ; 126(4): 041102, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576646

RESUMO

Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO 600 observatory and demonstrate for the first time a reduction of quantum noise up to 6.03±0.02 dB in a kilometer scale interferometer. This is equivalent at high frequencies to increasing the laser power circulating in the interferometer by a factor of 4. Achieving this milestone, a key goal for the upgrades of the advanced detectors required a better understanding of the noise sources and losses and implementation of robust control schemes to mitigate their contributions. In particular, we address the optical losses from beam propagation, phase noise from the squeezing ellipse, and backscattered light from the squeezed light source. The expertise gained from this work carried out at GEO 600 provides insight toward the implementation of 10 dB of squeezing envisioned for third-generation gravitational wave detectors.

9.
Mar Environ Res ; 163: 105230, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33419580

RESUMO

Climate change is a global threat for marine ecosystems, their biodiversity and consequently ecosystem services. In the marine realm, marine protected areas (MPAs) were designated to counteract regional pressures, but they might be ineffective to protect vulnerable species and habitats, if their distribution is affected by global climate change. We used six Species Distribution Models (GLM, MARS, FDA, RF, GBM, MAXENT) to project changes in the distribution of eight benthic indicator and key species under climate change in the North Sea MPAs for 2050 and 2099. The projected distribution area of most species will be stable or even increase within the MPAs between 2001 and 2050. Thereafter, the distribution area decreased, especially within MPAs in the central North Sea by 2099, and some key species even disappeared from the MPAs. Consequently, the monitoring and protection of benthic species might not be possible within static MPA borders under climate change.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade , Conservação dos Recursos Naturais , Mar do Norte
10.
Phys Rev Lett ; 125(17): 176401, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156655

RESUMO

The electrons in 2D systems with broken inversion symmetry are spin-polarized due to spin-orbit coupling and provide perfect targets for observing exotic spin-related fundamental phenomena. We observe a Fermi surface with a novel spin texture in the 2D metallic system formed by indium double layers on Si(111) and find that the primary origin of the spin-polarized electronic states of this system is the orbital angular momentum and not the so-called Rashba effect. The present results deepen the understanding of the physics arising from spin-orbit coupling in atomic-layered materials with consequences for spintronic devices and the physics of the superconducting state.

11.
ACS Nano ; 14(6): 6539-6547, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32363855

RESUMO

How superconductivity emerges from antiferromagnetic ordering is an essential question for Fe-based superconductors. Here, we explore the effect of dimensionality on the interplay between antiferromagnetic ordering and superconductivity by investigating nanoribbons of single-layer FeTe1-xSex films grown on SrTiO3(001) substrates by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we find a one-dimensional (1D) superconducting channel 2 nm wide with a TC of 42 ± 4 K on the edge of FeTe1-xSex (x < 0.1) ribbons, coexisting with a non-superconducting ribbon interior that remains bicollinear antiferromagnetically ordered. Density functional theory calculations indicate that both Se and the presence of the edge destabilize the bicollinear antiferromagnetic magnetic order, resulting in a paramagnetic region near the edge with strong local checkerboard fluctuations that is conducive to superconductivity. Our results represent the highest TC achieved in 1D superconductors and demonstrate an effective route toward stabilizing superconductivity in Fe-based superconductors at reduced dimensions.

12.
Nano Lett ; 19(4): 2497-2502, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30916981

RESUMO

The de Gennes extrapolation length is a direction dependent measure of the spatial evolution of the pairing gap near the boundary of a superconductor and thus provides a viable means to probe its symmetry. It is expected to be infinite and isotropic for plain s-wave pairing, and finite and anisotropic for d-wave. Here, we synthesize single-layer FeSe films on SrTiO3(001) (STO) substrates by molecular beam epitaxy and measure the de Gennes extrapolation length by scanning tunneling microscopy/spectroscopy. We find a 40% reduction of the superconducting gap near specular [110]Fe edges, yielding an extrapolation length of 8.0 nm. However, near specular [010]Fe edges, the extrapolation length is nearly infinite. These findings are consistent with a phase changing pairing with 2-fold symmetry, indicating d-wave superconductivity. This is further supported by the presence of in-gap states near the specular [110]Fe edges, but not the [010]Fe edges. This work provides direct experimental evidence for d-wave superconductivity in single-layer FeSe/STO and demonstrates quasiparticle scattering at boundaries to be a viable phase sensitive probe of pairing symmetry in Fe-based superconductors.

13.
Opt Express ; 24(18): 20107-18, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607619

RESUMO

Current laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5-50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise. We present a new electronic circuit design reducing the electronic noise of the photodetection circuit in the audio band. In the application of this circuit at the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit is about 5µA/Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also creates headroom for higher laser power and more squeezing to be observed in the future in GEO 600 and is applicable to other optics experiments.

14.
ACS Nano ; 10(9): 8450-6, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27617796

RESUMO

van der Waals (vdW) heterostructures of two-dimensional materials exhibit properties and functionalities that can be tuned by stacking order and interlayer coupling. Although direct covalent bonding is not expected at the heterojunction, the formation of an interface nevertheless breaks the symmetries of the layers, and the orthogonal requirement of the wave functions can lead to indirect interfacial coupling, creating new properties and functionalities beyond their constituent layers. Here, we fabricate graphene/topological insulator vdW heterostructure by transferring chemical vapor deposited graphene onto Bi2Se3 grown by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we observe a giant spin-orbit splitting of the graphene Dirac states up to 80 meV. Density functional theory calculations further reveal that this splitting of the graphene bands is a consequence of the breaking of inversion symmetry and the orthogonalization requirement on the overlapping wave functions at the interface, rather than simple direct bonding. Our findings reveal two intrinsic characteristics-the symmetry breaking and orthogonalization of the wave functions at the interface-that underlines the properties of vdW heterostructures.

15.
Nanoscale ; 4(19): 5887-94, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22899322

RESUMO

We have investigated the room-temperature sensing enhancement of Ag nanoparticles (NPs) for multiwalled carbon nanotube (MWCNT)-based gas sensors using electrical measurements, in situ infrared (IR) microspectroscopy, and density functional theory (DFT) calculations. Multiple hybrid nanosensors with structures of MWCNTs/SnO(2)/Ag and MWCNTs/Ag have been synthesized using a process that combines a simple mini-arc plasma with electrostatic force directed assembly, and characterized by electron microscopy techniques. Ag NPs were found to enhance the sensing behavior through the "electronic sensitization" mechanism. In contrast to sensors based on bare MWCNTs and MWCNTs/SnO(2), sensors with Ag NPs show not only higher sensitivity and faster response to NO(2) but also significantly enhanced sensitivity to NH(3). Our DFT calculations indicate that the increased sensitivity to NO(2) is attributed to the formation of a NO(3) complex with oxygen on the Ag surface accompanying a charge rearrangement and a net electron transfer from the hybrid to NO(2). The significant response to NH(3) is predicted to arise because NH(3) is attracted to hollow sites on the oxidized Ag surface with the H atoms pointing towards Ag atoms and electron donation from H to the hybrid sensor.


Assuntos
Técnicas Eletroquímicas , Gases/análise , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Prata/química , Amônia/análise , Óxidos de Nitrogênio/análise , Temperatura , Compostos de Estanho/química
16.
ACS Appl Mater Interfaces ; 4(9): 4898-904, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22877361

RESUMO

We report a selective, room-temperature NH(3) gas-sensing platform with enhanced sensitivity, superfast response and recovery, and good stability, using Ag nanocrystal-functionalized multiwalled carbon nanotubes (Ag NC-MWCNTs). Ag NCs were synthesized by a simple mini-arc plasma method and directly assembled on MWCNTs using an electrostatic force-directed assembly process. The nanotubes were assembled onto gold electrodes with both ends in Ohmic contact. The addition of Ag NCs on MWCNTs resulted in dramatically improved sensitivity toward NH(3). Upon exposure to 1% NH(3) at room temperature, Ag NC-MWCNTs showed enhanced sensitivity (~9%), very fast response (~7 s), and full recovery within several minutes in air. Through density functional theory calculations, we found that the fully oxidized Ag surface plays a critical role in the sensor response. Ammonia molecules are adsorbed at Ag hollow sites on the AgO surface with H pointing toward Ag. A net charge transfer from NH(3) to the Ag NC-MWCNTs hybrid leads to the conductance change in the hybrid.


Assuntos
Amônia/análise , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Prata/química , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Temperatura
17.
ACS Nano ; 5(12): 9710-7, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22098501

RESUMO

As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.


Assuntos
Cristalização/métodos , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Semicondutores , Condutividade Elétrica , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Oxirredução , Óxidos/química , Tamanho da Partícula , Propriedades de Superfície , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...